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ABSTRACT

Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) di-
agnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be
stitched together into a single time series, and they may have non-uniform and redundant time samples. We
chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a
general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog,
to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple
data channels with redundant time samples and missing data points. The data channels can have different, time-
varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal
smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate
the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed
on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this
paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it
with simulated and experimental data.

Keywords: Cubic spline, smoothing

1. INTRODUCTION

The National Ignition Facility (NIF) is a 192-beam pulsed laser system completed in May 2009 at the Lawrence
Livermore National Laboratory (LLNL) and now producing experimental results for the study of inertial con-
finement fusion and the physics of extreme energy densities and pressures [1]. The initial goals of NIF include
demonstration of thermonuclear burn (ignition) of deuterium and tritium fuel (D-T) in a laboratory setting.
One of the ways to measure the energy yield over very short time-scales (20 ns) and large dynamic range is with
carefully-timed measurements of gamma-rays emitted by the imploding D-T target [2]. The Gamma Reaction
History (GRH) diagnostic has been successfully deployed for this purpose at the OMEGA laser [3] and is now
operational at NIF, producing many time waveforms for each imploded target shot. To obtain the required
orders-of-magnitude in dynamic range for GRH, experimenters are recording multiplexed channels of the same
event, each with different voltage offsets, attenuation, and even time scales. The absolute noise levels or uncer-
tainties for each channel are different, and some of the channels may have saturated regions that cannot be used.
The goal of this paper is to describe a method that accurately estimates the “true” signal, with estimated error
bars, that combines all data from the multiplexed noisy waveforms into a single composite, or “stitched”, signal.

A “stitching” method for NIF data must be automatic, robust, and yield high-quality results. One ap-
proach to spline smoothing with repeated time samples is addressed in [4], which models the true signal as a
stochastic process and solves for its estimate using a Kalman filter approach. However, based on past work by
other researchers on OMEGA GRH data and ease of implementation, we chose to modify the cubic smoothing
spline technique in [5] to our needs. The modified algorithm and the resulting code perform a cubic smoothing
spline fit to multiple data channels with redundant time samples and missing data points. The data channels
can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically
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determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score [6]. In
order to automatically detect failure of the smoothing level selection or excessive bias in the fit, the Weighted
Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Furthermore, confidence
intervals, both analytical and Monte Carlo, are also calculated. In the first section of this paper, we describe the
derivation of our cubic smoothing spline algorithm and provide error estimates. Then we apply it to simulated
and experimental data. The evaluation of the results motivates the need for the model accuracy checks.

2. ALGORITHM DERIVATION

In this section we derive our algorithm for fitting a cubic smoothing spline to data with repeated time samples.
The introductory portion of our derivation and its notation are taken from a combination of [4], [7], [8].

Following [4], we assume we have measurements from multiple data channels with samples yn,p at unique
times tn, with n = 1, 2, ..., N and p = 1, 2, ..., Pn. N is the number of unique time samples, and t1 ≥ t2 ≥
... ≥ tN . Pn is the number of redundant measurements for each unique time sample tn. We form yn,p into a
vector y = (y1,1, y1,2, ..., y1,P1

, y2,1, y2,2, ..., y2,P2
, ..., yN,1, yN,2, ..., yN,PN

)T [4], where superscipt “T” denotes the
transpose. Let the true function values at the unique times tn, n = 1, 2, ..., N be a = (a1, a2, ..., aN)T . Let
the zero-mean, independent, white noise random variables added to the true values be formed into the vector
η = (η1,1, η1,2, ..., η1,P1

, η2,1, η2,2, ..., η2,P2
, ..., ηN,1, ηN,2, ..., ηN,PN

)T . Our measurement model in matrix form then
is

y
︸︷︷︸

M×1

= F
︸︷︷︸

M×N

a
︸︷︷︸

N×1

+ η
︸︷︷︸

M×1

, (1)

where η is a column vector representing the zero-mean, independent, white noise added to each of the measure-
ments. The matrix F is the M ×N matrix of zeros and ones, with ones in rows m = 1, 2, ..., P1 of column n = 1;
ones in rows m = P1 + 1, P1 + 2, ..., P1 + P2 of column n = 2; and so on up to column n = N , where there are

ones in rows m =
(
∑N−1

i=1
Pi

)

+ 1,
(
∑N−1

i=1
Pi

)

+ 2, ...,
(
∑N−1

i=1
Pi

)

+ PN [4]. M is the total number of all of the

measurements: M =
∑N

n=1
Pn.

The function to be minimized is obtained by altering the one in [7] to account for redundant time samples:

â = arg min
a

{
(y − Fa)T W−2(y − Fa) + αaT QT−1QTa

}
, (2)

where W is the M ×M diagonal matrix with the standard deviations of the elements of η along it main diagonal
and zeros elsewhere [7], Q is the N × (N − 2) matrix with rows j = 1, 2, ..., N and columns i = 1, 2, ...,N − 2 as
follows [7]:

Qj,i =







h−1

i , j = i

−(h−1

i + h−1

i+1), j = i + 1
h−1

i+1
, j = i + 2

0, otherwise ,

(3)

with hi = ti+1−ti, and T is the (N−2)×(N−2) matrix with rows i = 1, 2, ..., N−2 and columns j = 1, 2, ...,N−2
as follows [7]:

Ti,j =







1

6
hi, j = i − 1

1

3
(hi + hi+1), j = i

1

6
hi+1, j = i + 1

0, otherwise .

(4)

The smoothing parameter, α, controls the tradeoff between the two terms of Equation 2: if α is very small, the
estimate minimizes the sum of the squared residuals, while if α is very large, the estimate is a least-squares fit
of a straight line to the data [7]. In order to solve Equation 2, we can determine the a that satisfies

d

da
[(y − Fa)T W−2(y − Fa) + αaT QT−1QTa] = 0 (5)



using matrix calculus [9], [10], which gives us the estimate âα:

âα = (Λ + αQT−1QT )−1F TW−2y , (6)

where Λ = F TW−2F . The straightforward solution in Equation 6 is not desirable from a computational stand-
point, since the matrix that is inverted is full, so we seek a form that is more computationally tractable. Starting
with Equation 6 and using QT âα = T ĉα, which is a property of cubic splines [7], we arrive at the following set
of equations:

ĉα = (T + αQT Λ−1Q)−1QT Λ−1F T W−2y (7)

âα = Λ−1F TW−2y − αΛ−1Qĉα . (8)

Equations 7 and 8 are similar to Equations 2.5 and 2.6 in [5] and form a tractable solution for âα, given α. We
modify the algorithm in [5] to solve for âα with an α given by GCV score minimization.

As in [5], we define the matrix Bα as

Bα = T + αQT Λ−1Q , (9)

so that
ĉα = B−1

α QT Λ−1F T W−2y . (10)

Setting ûα = ĉα, we find
Bαûα = QT Λ−1F T W−2y , (11)

which we can solve efficiently using banded solvers or Cholesky decomposition [5].

Next, with foresight to the GCV score computation, we set v̂α = W−1(I − FAα)y, where Aα is defined by
substituting Equation 7 into Equation 8 [5]:

âα = [Λ−1F T W−2 − Λ−1QB−1
α QT Λ−1F T W−2]

︸ ︷︷ ︸

Aα

y . (12)

After substitution of Aα into the equation v̂α = W−1(I − FAα)y, linear algebra leads to

v̂α = W−1[(I − FΛ−1F TW−2)y − αFΛ−1Qûα] , (13)

and

âα = (F T F )−1F T (y − W v̂α) (14)

ĉα = ûα . (15)

Now we outline the computation of the GCV score. First, we express the GCV score Vα for a given α as
[4], [5], [11]

Vα =
1

M
||W−1(I − FAα)y||2
[ 1

M
Tr(I − FAα)]2

. (16)

In order to compute the numerator of Equation 16, we calculate [5]

Fα = v̂T
α v̂α . (17)

The computation of the denominator of Equation 16 is more involved. First, we compute the five central bands
of B−1

α using the rational Cholesky decomposition and Theorem 3.1 of [5]. Then we use the resulting five central
bands of B−1

α to compute Tr(I − FAα) as follows:

Tr(I − FAα) = Tr(I − FΛ−1F TW−2) + αTr(QTΛ−1F TW−2FΛ−1QB−1
α ) . (18)



Vα is then computed as [5]

Vα =
1

M
Fα

[ 1

M
Tr(I − FΛ−1F T W−2 + QT Λ−1F TW−2FΛ−1QB−1

α )]2
. (19)

Equations 11, 13, 14, and 19 are computed repeatedly to find the minimum α. The âα corresponding to the
minimum α is taken to be the estimate of the unknown true function at times tn, n = 1, 2, ...,N . Similarly,
ĉ is the ûα corresponding to the minimum α. The resulting cubic spline can then be computed by standard
techniques.

3. ERROR ESTIMATES

Further linear algebra manipulations yield error estimates for â. The covariance matrix for â is found to be

C = (I − αΛ−1QB−1
α QT )Λ−1F T W−2FΛ−1(I − αΛ−1QB−1

α QT )T . (20)

The standard deviations are computed by taking the square root of the main diagonal elements of C. Unfor-
tunately, computation of C involves inversion of the full matrix Bα, which might be prohibitively expensive.
Another option is Monte Carlo estimates of C, which can be tractable, depending on the number of realizations
required. Note that these error estimates are simply composed of the errors caused by imperfect measurements.
They are the “R-errors” in [12], [13]. They do not include the “F-errors”, or errors due to smoothing [12], [13].
Part of the reason for the model accuracy checks in Section 5 is to address possible F-errors.

4. APPLICATION TO SIMULATED AND REAL DATA

In Figure 1, we show the results of applying the algorithm to real GRH data from OMEGA (July 30, 2009).
We use standard deviations of 0.05, 0.1, 0.5, and 1.0 for the noise on channels one through four, respectively.
Also, we scale the time values from seconds to nanoseconds before calculating the various matrices that involve
time. The upper left plot in Figure 1 shows the actual data for separate channels in each subplot. The upper
right plot shows the actual data with the cubic smoothing spline estimate superimposed. The bottom left plot
shows the Vα curve for various α values. The estimate used corresponds to the α with the minimum value of
Vα. The lower right plot in Figure 1 shows the corresponding standard deviation estimates. Note that the cubic
smoothing spline appears to fit rather well over most of the signal, except at very sharp peaks and troughs.

In order to more clearly demonstrate the performance of the cubic smoothing spline fitting method, we craft
simulated data from the OMEGA GRH data used in Figures 1 by fitting a sum of gaussians to the data and
adding zero-mean gaussian white noise with standard deviations of 0.05, 0.1, 0.5, and 1.0 for the noise on channels
one through four, respectively. Figure 2 shows plots for the results for one realization of the simulated data.
Since we have the “true” values for the simulation, we plot these in the upper right subplot of Figure 2. In the
same subplot we also plot the residual between the cubic smoothing spline and the true value. We see good
results everywhere except at the very sharp peaks. In an effort to quantitatively evaluate the performance of the
algorithm, we ran 100 realizations and found the mean value at 233.7760 ns (near the apex of one very sharp
peak) to be 29.7, compared with the true value of 31.9.

If we fit the cubic smoothing spline to only the data around the peak, the bias of the fit decreases (Figure 3).
Again, we ran 100 realizations and found the mean value at 233.7760 ns to be 31.5, compared with the true value
of 31.9. Such behavior indicates that robust application of the cubic smoothing spline fitting method described
in this report must include model accuracy checks, which is the subject of Section 5.

5. MODEL ACCURACY CHECKS

In an algorithm that automatically chooses the model parameters, it is desirable to have a check on the accuracy
of the model. If the model is inaccurate, then neither the prediction nor the error bounds can be trusted.
The model accuracy can be checked using a few facts about the noise and using the difference between the
measurement and the model, called either the error or innovation sequence. The model accuracy methods in this
section are summarized from [14].
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Figure 1. Results of applying the cubic smoothing spline algorithm to real GRH data from OMEGA. The upper left
plot shows the actual data for separate channels as subplots. The upper right plot shows the actual data with the cubic
smoothing spline estimate superimposed. The bottom left plot displays the Vα curve for various α values. The lower right
plot shows the corresponding standard deviation estimates.
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Figure 2. Results of applying the algorithm to simulated data. See Figure 1 for an explanation of the plots. The “true”
values and the actual errors (smoothing spline minus true) are added to the upper right subplot of this figure.

If the model is accurate, the innovation sequence should consist of only noise, since the signal will have been
mostly extracted from the measurement. If the noise is zero-mean and white, this implies that the innovation
sequence will be zero-mean and white. Checking if the innovation sequence is zero-mean is straightforward and
is done by computing the mean of the innovation sequence in a window centered at each sample point. If the
noise is gaussian, then the WSSR test is a tractable test for whiteness. The formula,

WSSR(p, K) =

p
∑

k=p−K+1

eT (k)R−1
ee (k)e(k) (21)

where p is the time sample being tested, e(k) represents the innovation sequence at sample k, K is the window
size, and Ree(k) is the covariance of the innovation at sample k. Since the covariance of the innovation sequence
is known on each channel, and each sample is assumed to be independent, the covariance of each sample is
available and the WSSR statistic can be calculated. For a white, zero-mean innovation sequence, these statistics
should be near zero, within a selected threshold.

For both the zero-mean test and the WSSR test, two parameters can be chosen. The first is the window
length K. A longer window will smooth the resulting curve while too short of a window will not contain enough
samples for the measurement. We choose this parameter by experiment. The second is the threshold at which a
sample is considered to fail the test, which is chosen by giving a level of significance. For example, if a significance
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Figure 3. Results of applying the algorithm to a subset of the simulated data in Figure 2 which contains only the peak at
233.7760 ns.

level of 5% is desired, using the gaussian distribution the zero-mean threshold is

τzero mean = 1.96

√

Ree

K
, (22)

and the WSSR threshold is
τWSSR = K + 1.96

√
2K . (23)

Thus, if less than 5% of the innovation sequence fails the test, the sequence is statistically zero-mean and white,
implying that the model captures all of the information present in measurement.

6. SUMMARY AND CONCLUSIONS

We have modified an existing cubic smoothing spline algorithm by Hutchinson and deHoog [5] to accept redundant
time samples. The resulting algorithm performs well on both simulated and real data. However, it exhibits
smoothing errors for sharp peaks when their time span is small compared with the total time range of the data.
We have applied model accuracy checks in an effort to detect when such smoothing errors, and other failures
of the code, occur. Future work in making the routine more robust should include time-varying smoothing
parameters or variable knot location methods, such as in [12], [13]. One approach could be to use model error
checks to localize the smoothing errors and then use the model error checks to guide adaptation of the smoothing
parameters on a more local level.
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